20 May 2011

Pusat Listrik Tenaga Air (PLTA)

Air yang mengalir mempunyai energi yang dapat digunakan untuk memutar roda turbin, karena itu pusat-pusat tenaga air dibangun disungai-sungai dan dipegunungan-pegunungan. Pusat tenaga air tersebut dapat dibedakan dalam 2 (dua) golongan, yaitu pusat tenaga air tekanan tinggi dan pusat tenaga air tekanan rendah.
Pada pusat tenaga air tekanan tinggi dapat diketahui bahwa dengan didirikannya bendungan di daerah yang tinggi akan terdapatlah sebuah reservoir air cukup besar. Dengan menggunakan pipa air tersebut dialirkan ke rumah pusat tenaga yang dibangun dibagian bawah bendungan, dan didalam rumah tersebut telah dipasang dua buah nosel turbin, lewat nosel itulah air akan menyemprot keluar dan memutar roda turbin, kemudian baru air tersebut dibuang ke sungai. Dari selisih tinggi permukaan air atas TPA dan permukaan air bawah TPB terdapat tinggi air jatuh H. Dan dengan menggunakan rumus-rumus mekanika fluida, daya turbin,luas penampang lintang saluran dan dimensi bagian-bagian turbin lainnya serta bentuk energi dari aliran air dapat ditentukan.

Bagian-bagian utama dari sebuah Pusat Listrik Tenaga Air (PLTA) terdiri dari :
a. Bendungan/dam (water reservoir)
b. Pipa pesat (pipe line)
c. Turbin air (water turbine)

Air sungai merupakan salah satu potensi yang cukup besar untuk dapat membangkitkan tenaga listrik. Aliran sungai dengan jumlah debit air yang cukup besar ditampung dalam waduk (1) yang ditunjang dengan bangunan bendungan (3). Air tersebut dialirkan melalui saringan Power Intake (2) kemudian masuk ke Pipa Pesat (Penstock) (4) untuk merubah energi potensial menjadi energi kinetik. Pada ujung pipa pesat dipasang Katup Utama (Main Inlet Valve) (5) untuk mengalirkan air ke turbin. Katup utama akan ditutup otomatis apabila terjadi gangguan atau di stop atau dilakukan perbaikan/pemeliharaan turbin.

Air yang telah mempunyai tekanan dan kecepatan tinggi (energi kinetik) dirubah menjadi energi mekanik dengan dialirkan melalui sirip-sirip pengarah (sudu tetap) akan mendorong sudu jalan/runner yang terpasang pada turbin (6). Energi putar yang diterima oleh turbin selanjutnya digunakan untuk menggerakkan generator (7) yang kemudian menghasilkan tenaga listrik. Air yang keluar dari turbin melalui Tail Race (8) selanjutnya kembali ke sungai (9). Tenaga listrik yang dihasilkan oleh generator, tegangannya masih rendah (13,8 kV). Oleh karena itu, tegangan tersebut terlebih dahulu dinaikkan dengan Trafo Utama (10) menjadi 154 kV untuk efisiensi penyaluran energi dari pembangkit ke pusat beban. Tegangan tinggi tersebut kemudian diatur/dibagi di Switch Yard 150 kV Gardu Induk (11) dan selanjutnya disalurkan/interkoneksi ke sistem tenaga listrik melalui kawat saluran Tegangan Tinggi 150 kV (12). Disamping itu pada waduk dengan sungai yang menjadi sumber energi utamanya apabila terjadi banjir maka kelebihan air tersebut akan dibuang melalui pintu pelimpas otomatis (spillway) (13).
Pada
pusat listrik tenaga air (PLTA) ini energi listrik yang dihasilkan generator sangatlah bergantung dari tingkat ketersediaan air yang ada dan sumber-sumber air yang mampu untuk dimanfaatkan serta kondisi geografis yang ada. Seperti pada pusat listrik tenaga air (PLTA) dinegeri Cina energi listrik yang mampu dihasilkan oleh generator sampai diatas 1000 MW karena tingkat ketersediaan air yang sangat berlimpah dan berlangsung dalam periode tahunan, dimana air sebagai sumber energi utamanya diambil dari aliran sungai kuning (yellow river). Sedangkan pada pusat listrik tenaga air (PLTA) dengan skala energi listrik yang dihasilkan oleh generator kecil dapat diambil contoh pada PLTA Sudirman di Banjarnegara, dimana air sebagai sumber energi utamanya diambil dari aliran beberapa sungai yang ada dan ditampung didalam bendungan/dam, sehingga hal ini tingkat ketersediaan air sangatlah terbatas. Sedangkan pada pusat listrik tenaga air (PLTA) dengan skala energi listrik yang dihasilkan oleh generator adalah skala menengah seperti pada PLTA Saguling di Jawa Barat, dimana air sebagai sumber energi utamanya diambil dari aliran beberapa sungai yang ada dan ditampung didalam bendungan/dam serta ditambah dengan curah hujan yang relative cukup tinggi dan dalam rentang periode yang cukup lama, maka air sebagai sumber energi utama PLTA tersebut dapat dimanfaatkan secara optimal.

Gambar Prinsip Kerja
PLTA


24 April 2011

Memasang Instalasi Motor 3 Fasa Bekerja Secara Berurutan

I. Tujuan Pembelajaran
1. Agar dapat Memasang Instalasi Motor 3 Fasa Bekerja Secara Berurutan.
2. Agar dapat mengoperasikan motor 3 fasa yang bekerja secara berurutan.

II. Alat dan Bahan
a. Alat-alat
1. Tang Kombinasi
2. Tang Pengupas Kabel
3. Tang Pemotong
4. Obeng (+) (-)
5. Tes Pen
6. Multimeter

b. Bahan
1. Motor Induksi 3 Fasa
2. Kontaktor Magnet
3. Over Load
4. MCB 3 Fasa
5. Tombol Off, On
6. Kabel NYA 2,5 mm2
7. Terminal Strip 10 mm

III. Langkah Kerja
1. Teliti dengan baik gambar kerja.
2. Buat dahulu gambar pengawatan sesuai gambar diagram.
3. Siapkan semua peralatan yang diperlukan.
4. Mulailah bekerja sesuai rencana.
5. Setelah selesai melaksanakan pengawatan, cek dahulu kebenaran rangkaian dengan menggunakan multimeter.
6. Dalam pengawasan instruktur hubungkan rangkaian ke sumber tegangan.
7. Lakukan pengoperasian :
- Tekan tombol On1, maka motor1 akan bekerja.
- Setelah motor1 bekerja, tekan tombol On2, maka motor2 akan bekerja.
- Motor2 tidak akan bekerja apabila motor1 belum bekerja.
8. Amati hasil percobaan anda.
9. Buatlah kesimpulan hasil percobaan anda.
10. Bongkar kembali rangkaian dan bersihkan kembali tempat kerja anda.

IV. Keselamatan Kerja
1. Letakkan semua peralatan pada tempat yang aman.
2. Gunakan peralatan sesuai dengan fungsinya.
3. Tanyakan pada instruktur bila mengalami kesulitan.

Gambar Rangkaian Daya




Gambar Rangkaian Pengendali


23 April 2011

Memasang Instalasi Pintu Gerbang

I. Tujuan Pembelajaran
1. Agar dapat memasang instalasi listrik untuk membuka dan menutup pintu gerbang menggunakan motor 3 fasa yang dikontrol secara semi otomatis dan otomatis.
2. Agar dapat merencanakan instalasi listrik untuk membuka dan menutup pintu gerbang menggunakan motor 3 fasa yang dikontrol secara semi otomatis dan otomatis.
3. Agar dapat mengoperasikan instalasi pintu gerbang yang telah dipasang sesuai dengan prinsip kerja rangkaian yang telah direncanakan.

II. Alat dan Bahan
a. Alat-alat
1. Tang Kombinasi
2. Tang Pengupas Kabel
3. Tang Pemotong
4. Obeng (+) (-)
5. Tes Pen
6. Multimeter

b. Bahan
1. Motor Induksi 3 Fasa
2. Kontaktor Magnet
3. Over Load
4. MCB 3 Fasa
5. Tombol F / R
6. Time Delay Relay
7. Kabel NYA 2,5 mm2
8. Terminal Strip 10 mm

III. Langkah Kerja
1. Teliti dengan baik gambar kerja.
2. Buat dahulu gambar pengawatan sesuai gambar diagram.
3. Siapkan semua peralatan yang diperlukan.
4. Mulailah bekerja sesuai rencana.
5. Setelah selesai melaksanakan pengawatan, cek dahulu kebenaran rangkaian dengan menggunakan multimeter.
6. Dalam pengawasan instruktur hubungkan rangkaian ke sumber tegangan.
7. Lakukan pengoperasian :
- Tekan tombol On 1, maka pintu akan membuka.
- Setelah pintu terbuka, selang beberapa waktu pintu akan menutup sendiri secara otomatis.
- Sebelum batas waktu tertentu pintu juga dapat ditutup sendiri secara manual.
8. Amati hasil percobaan anda.
9. Buatlah kesimpulan hasil percobaan anda.
10. Bongkar kembali rangkaian dan bersihkan kembali tempat kerja anda.

IV. Keselamatan Kerja
1. Letakkan semua peralatan pada tempat yang aman.
2. Gunakan peralatan sesuai dengan fungsinya.
3. Tanyakan pada instruktur bila mengalami kesulitan.

Gambar Rangkaian Daya




Gambar Rangkaian Pengendali


Pusat Listrik Tenaga Uap (PLTU)

Turbin adalah mesin penggerak, dimana energi fluida kerja dipergunakan langsung untuk memutar roda/poros turbin. Pada turbin tidak terdapat bagian mesin yang bergerak translasi, melainkan gerakan rotasi. Bagian turbin yang berputar biasa disebut dengan istilah rotor/roda/poros turbin, sedangkan bagian turbin yang tidak berputar dinamai dengan istilah stator. Roda turbin terletak didalam rumah turbin dan roda turbin memutar poros daya yang digerakkannya atau memutar bebannya (generator listrik, pompa, kompresor, baling-baling, dll).

Didalam turbin fluida kerja mengalami ekspansi, yaitu proses penurunan tekanan dan mengalir secara kontinyu. Penamaan turbin didasarkan pada jenis fluida yang mengalir didalamnya, apabila fluida kerjanya berupa uap maka turbin biasa disebut dengan turbin uap.

Pusat Listrik Tenaga Uap (PLTU) mempunyai bagian-bagian utama seperti :
a. Turbin uap (steam turbine)
b. Boiler (steam generator)
c. Kondensor (condenser)
d. Pompa-pompa (pumps)

Turbin uap untuk pembangkit menggunakan siklus uap tertutup, uap yang telah memutar turbin dengan energinya dikondensasikan kembali menjadi air dan dipompa ke boiler, selanjutnya dipanaskan lagi didalam boiler tersebut. Demikian seterusnya siklus ini terjadi terus menerus.

Gambar Prinsip Kerja PLTU



Air laut yang jumlahnya melimpah ruah dipompa oleh CWP (Circulating Water Pump) (1) yang sebagian besar dipakai untuk media pendingin di Condenser (6) dan sebagian lagi dijadikan air tawar di Desalination Evaporator (2). Setelah air menjadi tawar, kemudian dipompa oleh Distillate Pump (3) untuk kemudian dimasukkan ke dalam Make Up Water Tank (4) yang kemudian dipompa lagi masuk ke sistem pemurnian air (Demineralizer) dan selanjutnya dimasukkan ke dalam Demin Water Tank (5). Dari sini air dipompa lagi untuk dimasukkan ke dalam Condenser bersatu dengan air kondensat sebagai air benam ban. Air kondensat yang kondisinya sudah dalam keadaan murni dipompa lagi dengan menggunakan pompa kondensat, kemudian dimasukkan ke dalam 2 buah pemanas Low Pressure Heater (7) dan kemudian diteruskan ke Deaerator (8) untuk mengeluarkan atau membebaskan unsur O2 yang terkandung dalam air tadi. Selanjutnya air tersebut dipompa lagi dengan bantuan Boiler Feed Pump (9) dipanaskan lagi ke dalam 2 buah High Pressure Heater (10) untuk diteruskan ke dalam boiler yang terlebih dahulu dipanaskan lagi dengan Economizer (11) baru kemudian masuk ke dalam Steam Drum (12). Proses pemanasan di ruang bakar menghasilkan uap jenuh dalam steam drum, dipanaskan lagi oleh Superheater (14) untuk kemudian dialirkan dan memutar Turbin Uap (15). Uap bekas yang keluar turbin diembunkan dalam condenser dengan bantuan pendinginan air laut kemudian air kondensat ditampung di hot well.

Bahan bakar berupa residu/MFO dialirkan dari kapal/tongkang (16) ke dalam Pumping House (17) untuk dimasukkan ke dalam Fuel Oil Tank (18). Dari sini dipompa lagi dengan fuel oil pump selanjutnya masuk ke dalam Fuel Oil Heater (19) untuk dikabutkan di dalam Burner (20) sebagai alat proses pembakaran bahan bakar dalam Boiler.

Udara di luar dihisap oleh FDF (Forced Draught Fan) (21) yang kemudian dialirkan ke dalam pemanas udara (Air Heater) (22) dengan memakai gas bekas sisa pembakaran bahan bakar di dalam Boiler (13) sebelum dibuang ke udara luar melalui Cerobong/Stack (23).

Perputaran Generator (24) akan menghasilkan energi listrik yang oleh penguat/exciter tegangan mencapai 11,5 kV, kemudian oleh Trafo Utama/Main Transformater (25) tegangan dinaikkan menjadi 150 kV. Energi listrik itu lalu dibagi melalui Switch Yard (26) untuk kemudian dikirim ke Gardu Induk melalui Transmisi Tegangan Tinggi (27). Kemudian, tenaga listrik itu dialirkan lagi pada para konsumen.

Proses
PLTU secara sederhana dijelaskan sebagai berikut :
PLTU memanfaatkan bahan bakar Minyak, Gas atau Batu Bara sebagai Enerji Primernya. Air dari Hotwell Condensor dipompakan ke Deaerator melalui beberapa Low Pressure Heater untuk mendapatkan tinggi tekan positif (NPSH), selanjutnya dipompakan (dengan BFP ke Steam Drum melalui beberapa High Pressure Heater dan Pipa Ekonomiser di dalam Boiler. Di dalam Boiler proses pembakaran berlangsung dengan didahului pengaliran Udara oleh FD Fan melalui Air Heater, Air Register ke Burner, sementara bahan bakar minyak atau Gas atau Batu bara di alirkan ke Burner & bercampur dengan Udara menjadi Pembakaran di Boiler. Air di dalam Pipa Boiler dipanaskan dengan pembakaran tadi sehingga bersirkulasi diantara Pipa Down Comer, Water Header, Pipa Riser dan berkumpul Steam Drum. Uap dengan tekanan & Temperatur tertentu yang dihasilkan dipanaskan lebih lanjut di Superheater untuk digunakan memutar Turbin Uap yang di Kopel dengan Generator menghasilkan daya Listrik. Uap sisa memutar Turbin dikondensasikan di Kondensor dengan media pendingin Air Laut (Cooling System) untuk selanjutnya Air Kondensasi ini dapat digunakan lagi menjadi air Boiler (Proses).